Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Workplace Health & Safety ; 70(9):431-431, 2022.
Article in English | Web of Science | ID: covidwho-2043085
2.
Build Environ ; 224: 109530, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2003904

ABSTRACT

This study used Computational Fluid Dynamics (CFD) to investigate air disinfection for SARS-CoV-2 by the Upper-Room Germicidal Ultraviolet (UR-GUV), with focus on ceiling impact. The study includes three indoor settings, i.e., low (airport bus), medium (classroom) and high (rehearsal room) ceilings, which were ventilated with 100% clean air (CA case), 80% air-recirculation with a low filtration (LF case), and 80% air-recirculation with a high filtration (HF case). According to the results, using UR-GUV can offset the increased infection risk caused by air recirculation, with viral concentrations in near field (NF) and far field (FF) in the LF case similar to those in the CA case. In the CA case, fraction remaining (FR) was 0.48-0.73 with 25% occupancy rate (OR) and 0.49-0.91 with 45% OR in the bus, 0.41 in NF and 0.11 in FF in the classroom, and 0.18 in NF and 0.09 in FF in the rehearsal room. Obviously, UR-GUV performance in NF can be improved in a room with a high ceiling where FR has a power relationship with UV zone height. As using UR-GUV can only extend the exposure time to get infection risk of 1% (T 1% ) to 8 min in NF in the classroom, and 47 min in NF in the rehearsal room, it is necessary to abide by social distancing in the two rooms. In addition, T 1% in FF was calculated to be 18.3 min with 25% OR and 21.4% with 45% OR in the airport bus, showing the necessity to further wear a mask.

3.
IEEE International Instrumentation and Measurement Technology Conference (I2MTC) ; 2021.
Article in English | Web of Science | ID: covidwho-1978392

ABSTRACT

LED lighting is becoming increasingly pervasive in many areas ranging from ambient lighting, up to applications such as microscope illumination, UV-LED curing and, UV disinfection for air, surfaces, and water. Irradiance uniformity is often a fundamental parameter for guiding the design, comparison, and optimization of the illuminator. To this end, many methods and procedures have been proposed to guide the arrangement of the LED sources, as well as to guide the design of ad-hoc lenses. Nevertheless, there are many applications in which it is important to be able to consider other aspects as well as the uniformity of the irradiance. For this purpose, we propose both a method that allows calculating the irradiance generated by the used LED sources and, performance indicators for guiding the design and comparing different optical layouts.

4.
Infect Control Hosp Epidemiol ; 43(7): 886-891, 2022 07.
Article in English | MEDLINE | ID: covidwho-1279735

ABSTRACT

OBJECTIVE: To circumvent the need for rationing personal protective equipment (PPE), we explored whether germicidal ultraviolet light (GUV) could be used to inactivate human coronaviruses on PPE, enabling safe reuse. DESIGN: We performed a laboratory study to assess the ability of 2 commercially available portable GUV devices to inactivate 2 common cold coronaviruses (HCoV-229E and HCoV-OC43) and severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), on the surface of whole N95 respirators and coupons cut from those respirators. We experimentally contaminated N95 respirators with coronavirus cultures and then assessed viral inactivation after GUV exposure by plaque assay, the median tissue culture infectious dose (TCID50) assay, and quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS: We found that GUV could efficiently inactivate coronaviruses on the surface of N95 masks, with an average reduction in viral titers of 5-log for HCoV-229E, 3-log for HCoV-OC43, and 5-log for SARS-CoV-2. In addition, the GUV susceptibility of HCoV-229E was similar on coupons and whole N95 respirators. CONCLUSIONS: We demonstrate that diverse human coronaviruses, including SARS-CoV-2, are susceptible to GUV inactivation, and 2 scalable portable GUV devices were effective in inactivating coronaviruses on N95 respirators. Thus, GUV treatment with commercially scalable devices may be an effective method to decontaminate PPE, allowing their safe reuse.


Subject(s)
COVID-19 , Cross Infection , COVID-19/prevention & control , Cross Infection/prevention & control , Equipment Reuse , Humans , Personal Protective Equipment , SARS-CoV-2 , Ultraviolet Rays
5.
Viruses ; 12(9)2020 09 22.
Article in English | MEDLINE | ID: covidwho-973229

ABSTRACT

Coronaviruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.


Subject(s)
Murine hepatitis virus/chemistry , Peptides/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , Cell Line , Coronavirus Infections , Humans , Intracellular Membranes/metabolism , Mice , Murine hepatitis virus/genetics , Murine hepatitis virus/metabolism , Mutation , Peptides/chemical synthesis , Peptides/metabolism , Sf9 Cells , Spodoptera , Unilamellar Liposomes/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL